
D1.2: Security architectures, protocol design
and evaluation principles for

anti-counterfeiting/anti-tampering solutions
Project number: 238811
Project acronym: UNIQUE
Project title: Foundations for Forgery-Resistant Security

Hardware
Start date of the project: 01.09.2009
Duration: 30 months

Deliverable type: Document
Deliverable reference number: 238811/ D1.2 | v1.0
Deliverable title: Security architectures, protocol design

and evaluation principles for anti-counter-
feiting/anti-tampering solutions

WP contributing to deliverable: WP1
Due date: 2011-02-28 (M18)
Actual submission date: 2011-02-28

Responsible organisation: TUD
Authors: Vincent van der Leest, Geert-Jan Schrijen

(IID), Stefan Katzenbeisser, Heike Schröder,
Christian Wachsmann (TUD), Patrick Koeberl
(INTEL)

Abstract: This document is deliverable D1.2 from WP1
of the FP7 project UNIQUE. The goal of this
deliverable is to summarize appropriate secu-
rity architectures and its components as well
as the protocol design and evaluation princi-
ples for anti-counterfeiting and anti-tampering
solutions. The deliverable describes the main
principles for the development of new technolo-
gies in course of the UNIQUE project as well
as a set of evaluation principles.

Keywords: Security Architectures, Protocol Design

Dissemination level: Public
Revision: v1.0

Instrument: STREP
Thematic Priority: ICT

.

Contents

1 Introduction 3

2 Preliminaries and Notation 4
2.1 Notation . 4
2.2 Physically Unclonable Functions (PUFs) . 4
2.3 Collision-resistant Hash-Functions . 5

3 Logically Reconfigurable PUFs 7
3.1 Overview . 7
3.2 Formal Security Model . 8

3.2.1 Unpredictable LR-PUFs . 9
3.3 Instantiations . 9

3.3.1 Construction 1 . 9
3.3.2 Construction 2 . 12

4 Recyclable Tokens 15
4.1 Use Case Description . 16
4.2 Analysis of Existing Solutions . 17
4.3 Security Architectures for Recyclable Tokens . 21

5 HW/SW-Binding 23
5.1 Use Case Description . 23
5.2 Analysis of Existing Solutions . 24
5.3 Security Architectures for HW/SW-Binding . 24

6 Evaluation Principles 26
6.1 Evaluation Framework . 26
6.2 Analysis of Security Requirements . 27

1 Introduction

The goal of this deliverable is to summarize appropriate security architectures and its com-
ponents as well as the protocol design and evaluation principles for anti-counterfeiting and
anti-tampering solutions. The deliverable describes the main principles for the development
of new technologies in course of the UNIQUE project as well as a set of evaluation principles.
On top of this, it contains security models for the analysis of the concrete schemes developed
in WP2 for hardware anti-tampering/anti-counterfeiting solutions and recommendations for
future research in WP2.

Outline. Deliverable D1.2 consists of a theoretical and a practical part. In the theoretical
part, we introduce and formally define logically reconfigurable physically unclonable functions
(LR-PUFs) (see Section 3). Roughly speaking, an LR-PUF has the ability to change its
challenge/response behavior after deployment in a completely unpredictable way by using
a logical reconfiguration mechanism on top of a common PUF. Furthermore, we present a
generic LR-PUF construction and a formal security model for such kind of PUFs following
the methodologies of modern cryptography. Moreover, we show two different concrete LR-
PUF instantiations, one of them specifically tailored to the constrained resources of embedded
devices (e.g., RFID chips), and prove their security.

In the practical part we consider two application scenarios using LR-PUFs: recyclable
tokens (see Section 4) and hardware/software-binding (see Section 5). In each case, we give a
detailed use case description, analyze existing solutions, and present a security architecture for
the respective application scenario. Finally, in Section 6 we outline an evaluation framework
and analyse the security requirements for LR-PUFs.

3/33

2 Preliminaries and Notation

2.1 Notation

For a finite set S, |S| denotes the size of set S whereas for an integer (or a bit-string) n the
term |n| means the bit-length of n. The term s ∈R S means the assignment of a uniformly
chosen element of S to variable s. Let A be a probabilistic algorithm. Then y ← A(x) means
that on input x, algorithm A assigns its output to variable y. The term [A(x)] denotes the set
of all possible outputs of A on input x. AK(x) means that the output of A depends on x and
some additional parameter K (e.g., a secret key). Let E be some event (e.g., the result of a
security experiment), then Pr[E] denotes the probability that E occurs. Let l be a security
parameter (e.g., the bit length of a secret key). Probability ε(l) is called negligible if for all
polynomials f it holds that ε(l) ≤ 1/f(l) for all sufficiently large l. Probability 1 − ε(l) is
called overwhelming if ε(l) is negligible.

2.2 Physically Unclonable Functions (PUFs)

We start by giving a definition of a physically unclonable fucntion (PUF).

Definition 1 (Physically Unclonable Functions) A family of physically unclonable func-
tions PUF = (Assemb,Eval) is a set of physical realizations of a family of probabilistic algo-
rithms that fulfills the following algorithmic and physical properties.

Assembling The assembling process Assemb is both a physical and an algorithmic procedure.
The input is the security parameter 1n (e.g., the dimensions of the PUF specifying the
bitlength of challenges and responses) and the output is a physically uncloneable function
PUF.

Evaluation The evaluation procedure Eval maps an input c ∈ {0, 1}n to an output r ∈
{0, 1}m. The input c is called stimulus or challenge, and the output r is referred to
as response.

Since we operate on physical measurements we have to take care of their natural conditions.
This is, measurements are noisy by nature and thus, the measurements of the same stimuli
will result in different but closely related responses. In some application, such as authenti-
cation, it is enough to apply a distance function to deal with noisy measurements. In other
applications, however, a distance function is not enough because a noise-free response with
a uniform distribution (such as cryptographic keys) is required. To deal with this problem,
fuzzy extractors of Dodis et al. are applied – a secure form of error correction that enables a
reliable extraction of a uniform key from a noisy non-uniform input. We refer the interested
reader to [DRS04] for a comprehensive discussion and formal definitions. In the following, we
write r ← PUF(c) to indicate that r is a legitimate response to PUF(c).

We now turn to the formalization of the security properties of PUFs. The first prop-
erty reflects the fact that it is not possible to produce two devices that implement the same
challenge/response behavior.

Definition 2 (Uncloneability) We say that the PUF is uncloneable if there exists no effi-
cient procedure clone that, given the device D, builds another physical object D′ 6= D such that
both objects implement the same challenge/response behavior.

4/33

Next, we turn to the definition of unpredictability. Unpredictability states that nobody should
be able to predict the response to a given challenge without evaluating the PUF. The difference
to “regular” unpredictable functions is that an adversary may indeed be able to predict some
values. That is, some PUFs map closely related measurements to closely related responses.
Therefore we require that the prediction has to be non-trivial. In modern cryptography, the
security objectives are typically defined as a security experiment (game), where a polynomial
bounded adversary can interact with a set of oracles (algorithms) that model the capabilities
of the adversary. Hence, we now formalize unpredictability by defining the following game,
where A denotes the adversary: The adversary first collects several PUF measurements up to
a certain moment where he has no longer access to the device. Subsequently, the adversary has
to output a valid challenge and response pair (c∗, r∗) such that the (e.g., Hamming) distance
between its prediction and all previous measurements is at least ε. If this conditions is fulfilled
and if r∗ ← PUF(c∗), then the adversary wins the game.

Game PRE(PUF,A, n)

Setup The challenger generates a PUF by running the assembling procedure Assemb(1n) to
obtain a physically unclonable function PUF.

Queries Proceeding adaptively, the adversary may query the PUF-oracle OPUF q-times on a
challenge c ∈ {0, 1}n. It returns r ← PUF(c) to the adversary and adds c to a list Q.

Output Eventually, the adversary outputs a pair (c∗, r∗). The game outputs 1 if the distance
function dist(c∗, c) > ε for all c ∈ Q and r∗ ← PUF(c∗).

We define advA be the probability that Prob[PRE(PUF,A, n) = 1].

Definition 3 [Unpredictability] A physically unclonable function PUF represented by the pro-
cedures Assemb and PUF is unpredictable with respect to the game PRE(PUF,A, n) if for all
polynomial-time algorithms A running in time t, the probability Prob[PRE(PUF,A, n) = 1]
is at most δPRE.

2.3 Collision-resistant Hash-Functions

We define collision-resistant hash functions according to Katz-Lindell [KL07]:

Definition 4 A hash function is a pair of probabilistic polynomial-time algorithms Π =
(hGen, H) satisfying the following:

1. hGen is a probabilistic algorithm which takes as input a security parameter 1n and outputs
a key k. We assume that 1n is implicit in k.

2. There exists a polynomial ` such that H takes as input a key k and a string x ∈ {0, 1}∗
and outputs a string Hk(x) ∈ {0, 1}`(n) (where n is the value of the security parameter
implicit to k).

We simplify the notation by writing H(m) := H(k,m). Given a hash function Π = (hGen, H),
an adversary A, and a security parameter n. We define the following collision-finding game:

Game HASH-COL(A,Π, n)

Setup A key k is generated by running hGen(1n).

5/33

Output The adversary A is given k and outputs x, x′. The output of the game is defined to
be 1 if and only if x 6= x′ and Hk(x) = Hk(x′). In such a case we say that A has found
a collision.

Definition 5 A hash function Π represented by the procedures (hGen, H) is collision-resistant
if for all efficient adversaries A there exists a negligible function negl such that

Prob[HASH-COL(A,Π, n) = 1] ≤ negl(n).

6/33

3 Logically Reconfigurable PUFs

3.1 Overview

In many applications, it would be desirable to have a reconfigurable PUF, e.g., in order to
allow the key derived from a PUF to be updated. In [KSS+09] the authors suggest a number
of possible reconfigurable PUFs, that might be useful for this purpose. In theory, these PUFs
should be reconfigurable in a physical way to become completely different and independent
new PUFs in comparison to the situation before reconfiguration.

In practice however, it turns out that all of the PUFs from [KSS+09] have severe downsides.
These downsides have been discussed in UNIQUE Deliverable D2.1 [UNI10b] and have proven
to be considerable obstacles for implementing reconfigurable PUFs in practical applications.
Hence, either physical constraints or high cost prevent the use of physically reconfigurable
PUFs in Integrated Circuits.

However, for some use cases, it suffices to use a PUF that is not physically reconfigurable,
but that can only be reconfigured on a logical level. Therefore, we introduce the concept of
logically reconfigurable PUF (LR-PUF), for which use case examples are described later in
Section 4 and 5.

An LR-PUF can be constructed by using a regular PUF combined with a control logic
and non-volatile (NV) memory, as depicted in Figure 1. In this construction the NV-memory

LR-PUF

Reconf()

c

r

c’

r’

Non-volatile
memory
(state) S

PUF Control logic

Figure 1: Generic logically reconfigurable PUF construction

stores a state for the LR-PUF. This state is used by the control logic in combination with
the (set of) challenge/response pair(s) from the regular PUF (c′ and r′ in Figure 1) to create
a unique (set of) challenge/response pair(s) (c and r in the figure) for that specific state S
of the LR-PUF. When the control logic receives a reconfigure command, a ‘completely new
PUF’ is created by the control logic by updating the state S in the NV-memory. This means
that a new set of challenge/response pairs (c and r) is obtained, even though the PUF is not
physically altered (c′ and r′ remain the same). In section 3.3 it is explained how the control
logic from the LR-PUF should be constructed, in order to have a mathematically proven
secure implementation. The challenge/response pair(s) of an LR-PUF can either be used for
identification/authentication schemes or for secure key storage. For both of these application
scenarios, a use case example can be found later on in this document.

The typical attack scenarios against LR-PUFs can be summarized as follows:

• In case of identification/authentication schemes, an attacker will attempt to derive in-
formation about c′ and r′ of the physical PUF in the LR-PUF scheme. The protocols

7/33

used in these schemes should make this impossible for an attacker. The security proof
of the proposed protocols can be found in section 3.2.

• In case of secure key storage, an attacker will attempt to obtain the secret key that is
constructed based on the LR-PUF response r. Note that there is an important difference
with key storage in NV-memory: reading the state does not provide information about
the secret key. Therefore, an attacker cannot gain information about the secret key by
simply reading the memory content (which would have been a non-invasive attack). If
the secret key derived from the LR-PUF is used in the secure way as proposed in [TB06],
it should be impossible for an attacker to obtain this key.

• An attacker might want to change the state S in the NV-memory back to an old recon-
figuration. In order to be secure against this type of attack, the LR-PUF will have to
provide a certain level of tamper-resistance. More in detail, an adversary must not be
able to write a specific value (e.g., an old LR-PUF state) into the NV-memory.

Note that the NV-memory of the LR-PUF cannot be written from outside the LR-PUF com-
ponent. Hence, as discussed in Section 6.2 the only way to write data to this memory is
performing an invasive attack. However, using an invasive attack to write a certain value into
NV-memory is generally difficult in practice. This means that it will be extremely difficult for
an attacker to change the state of the LR-PUF back to a previously used state.

Further, note that denial-of-service attacks can always be performed physically on a device.
This can never be prevented, since it is possible to physically break/destroy a device. Using
the value of the state to perform a denial-of-service attack does not add value for an attacker,
since breaking/destroying the device will be easier and therefore preferred by the attacker.

The remainder of this section provides, besides a security proof for the LR-PUF, two
possible constructions for this new PUF type.

Definition 6 (Reconfigurable Physically Unclonable Function) A tuple rPUF = (rAssemb,
rEval,Reconfig) is a family of reconfigurable physically unclonable functions that fulfills the fol-
lowing algorithmic and physically properties.

Assembling The assembling process rAssemb is both a physically and an algorithmic proce-
dure. The input is the security parameter 1n and the output is a rPUF.

Evaluation The algorithm rEval maps an input c ∈ {0, 1}n to an output r of bit length m.
The input c is called stimulus (challenge), and the output r is referred to as response.

Reconfiguration The reconfiguration process Reconfig takes as input an rPUF and outputs
a reconfigured rPUF′.

3.2 Formal Security Model

Intuitively, the security of a reconfigurable physically unclonable function should say that
every efficient algorithm that queries the LR-PUF several times is not able to predict the
response to a (chosen) challenge after the LR-PUF has been reconfigured. In particular this
means that such algorithms may indeed be able to predict a response before the reconfiguration
algorithm has been run, but not afterwards. Consider for example that an adversary learns
the challenge-response behavior of a PUF, e.g., of a PUF with a small CRP space.

8/33

3.2.1 Unpredictable LR-PUFs

A possible notion of unpredictability of LR-PUFs could be that an attacker queries the LR-
PUF a certain number of times and commits to some arbitrary challenge before getting access
to the reconfiguration of the LR-PUF. Thus, the attacker commits to a challenge without
having access to the reconfigured PUF. Although this definition may allow very efficient LR-
PUF instantiations, it may not cover the case where the attacker is able to predict a response
to a challenge after having access to the LR-PUF. Consider for example the situation where
the reconfiguration algorithm changes only a fraction of the LR-PUF. This could mean that
only some CRPs of the reconfigured PUF are fresh while some of them are unchanged. But
without having access to the reconfigured PUF the attacker may not be able to exploit this
obvious weakness of the PUF.

We formalize this intuition in the following game where the adversaries advantage, advunpre
rPUF,A,

is defined as follows: Let A = (AL,AC) be an adversary modeled as a pair of efficient algo-
rithms. A consists of a learning adversary AL and a provocation adversary AC . Each attacker
interacts with the LR-PUF rPUF in the following two phases:

Setup The challenger generates a LR-PUF by calling the assembling procedure, i.e., rPUF←
rAssemb(1n).

Phase I: Learning The algorithm AL is initialized with a fresh random tape and queries
rPUF up to q times. At the end of the learning phase, AL stops and it outputs a state
st.

Revocation The challenger reconfigures the rPUF to rPUF′ using the reconfiguration algo-
rithm, i.e., rPUF′ ← reconf(rPUF).

Phase II: Provocation The algorithm AC is initialized with the state st and it has access
to rPUF′. The attacker AC may query rPUF′ on arbitrary challenges.

Output At the end of the provocation phase AC may output a pair (c∗, r∗).

The adversary A = (AL,AC) wins the game if r∗ ← rPUF′(c∗) and AC has never queried
rPUF′ on c∗.

Definition 7 Let |C| denote the set of all challenges and let |R| denote the set of all responses.
A reconfigurable physically unclonable function rPUF : {0, 1}|C| → {0, 1}|R| is unpredictable if
any adversary A running in time t, querying the rPUF at most qL times and rPUF′ at most
qC times wins the above game with probability at most 1

|R| + ε, where ε is negligible in n.

3.3 Instantiations

3.3.1 Construction 1

The idea of our first construction is to add a reconfiguration method on top of a regular PUF
in order to transform the physically unclonable function into a LR-PUF.

More precisely, the reconfiguration method consists of a n-bit string s (reconfigure state)
and a collision resistant hash function H. Now, the reconfiguration mechanism evaluates the
PUF on a modified challenge w′ ← H(c||s) derived via the collision-resistant hash function.
To reconfigure the LR-PUF, the reconfiguration algorithm simply picks a fresh value of the
reconfigure state in order to change the input/output behavior.

9/33

Construction 1 Let PUF = (Assemb,Eval) be a physically unclonable function. We construct
a reconfigurable physically unclonable function rPUF = (rAssemb, rEval,Reconfig) as follows:

Assembling On input of the security parameter 1n the algorithm rAssemb runs the assem-
bling algorithm of the physically unclonable function to obtain a PUF, i.e.,PUF ←
Assemb(1n). It chooses a value s ← {0, 1}n at random and picks a collision-resistant
hash function H by running the algorithm hGen(1n). The algorithm rAssemb then returns
(rPUF,PUF, s,H).

Evaluation On input of the challenge c the algorithm rEval runs the PUF evaluation algorithm
Eval on the modified challenge w′ = H(c||s) of bit length n which maps w′ to the output
r ∈ {0, 1}m.

Reconfiguration On input rPUF the reconfiguration process Reconfig modifies the current
state s ∈ {0, 1}n to the state s′ ∈ {0, 1}n.

Theorem 3.1 If PUF is an unpredictable physically unclonable function and H is a collision-
resistant hash function, then Construction 1 is an unpredictable reconfigurable physically un-
clonable function.

Proof The main idea of our proof is as follows: Suppose to the contrary that Construction 1
is insecure. We then construct an attacker B that breaks the unpredictability of the underlying
PUF or that finds collisions in the collision–resistant hash function H. But before describing
the algorithm B we distinguish between two types of attacker that A can emulate. Suppose
that A adaptively asks for challenges (c1, ..., cL, cL+1, ...cC) and obtains the corresponding
response (q1, ..., qL, qL+1, ...qC). Recall that qi ← rPUF(wi) with

wi :=

{
H(s||ci) for i = c1, ..., cL
H(s′||ci) for i = cL+1, ..., cC

and denote by (c∗, r∗) with r∗ ← rPUF(w∗) and w∗ = H(s′||c∗) the prediction for the rPUF
by A. We say that

Type-1 attacker The algorithm A is a type-1 attacker, denoted by Acol, if there exists an
index i such that wi = w∗ with r∗ ← rPUF(w∗) and w∗ = H(s′||c∗) and i ∈ {1, . . . , L, L+
1, . . . , C}.

Type-2 attacker The algorithm A is a type-2 attacker, denoted by Apred, if there exists no
index i such that wi = w∗ with r∗ ← rPUF(w∗) and w∗ = H(s′||c∗) and i ∈ {1, . . . , L, L+
1, . . . , C}.

In the following we show for each type of attacker, Acol,Apred, how to construct a suitable
simulator Bcol,Bpred. At first, the algorithm B tosses a coin to guess if A is a type-1 or a
type-2 attacker. Subsequently, B proceeds as follows:

10/33

Type-1 attacker On input key k the algorithm Bcol firstly chooses a collision-resistant
hash function H, i.e., H ← hGen(1n). Subsequently, it chooses a value s ← {0, 1}n and sets
rPUF(·) := PUF(H(s||·)). Now Bcol runs a black-box simulation of Acol.

If AL sends a challenge ci to its rPUF oracle, the algorithm Bcol computes the answer as
follows: It computes wi = H(s||ci), queries its oracle on qi ← rPUF(wi), stores (ci, wi, qi) in
some (initially empty) list L, and forwards qi to the attacker AL. At some point AL stops
outputting some state information st.

After obtaining st, the algorithm Bcol changes the reconfiguration value s to a fresh and
randomly chosen value s′ ← {0, 1}n in order to reconfigure rPUF. According to our construc-
tion we denote by rPUF′ the reconfigured PUF. It then executes AC as a black-box on input
st.

If AC sends a challenge ci to its rPUF′ oracle, the algorithm Bcol generates the answer
as follows: It sets wi = H(s′||ci), queries its oracle on qi ← rPUF(wi), stores (ci, wi, qi) in
some list L, and forwards qi to the attacker AC . At some point AC stops outputting a
challenge-response pair (c∗, r∗).

Finally, the algorithm Bcol parses (w1, ..., wL, wL+1, ..., wC) and it outputs the first element
wi (together with qi) with wi = w∗. If such an element does not exists, then Bcol aborts.

Suppose that Acol is a type-1 attacker that succeeds with non-negligible probability. Ob-
serve that both algorithms are efficient and that Bcol performs a perfect simulation from Acol’s
point of view. Then there exists an index i such that w∗ = wi. But if w∗ = wi, then Bcol
has found a collision in the hash function H. However, this is a contradiction to the collision-
resistance of the hash function and thus, such an attacker cannot exist.

Type-2 attacker On input security parameter n the algorithm Bpred firstly chooses a re-
configuration value s← {0, 1}n and a collision-resistant hash function H, i.e., H ← hGen(1n).
Then, Bcol runs a black-box simulation of Apred.

If AL sends a challenge ci to its rPUF oracle, the algorithm Bpred sets wi = H(s||ci).
Subsequently, it queries its oracle on wi, obtains qi, stores (ci, wi, qi) in some (initially empty)
list L, and forwards qi to the attacker AL. At some point AL stops outputting some state
information st.

After obtaining st, the algorithm Bpred changes the reconfiguration value s to a fresh
randomly chosen value s′ ← {0, 1}n in order to reconfigure the LR-PUF. According to our
construction we denote by rPUF′ the reconfigured PUF. It then runs a black-box simulation
of AC on input st (with access to rPUF′). It then runs a black-box simulation of AC .

If AC sends a challenge ci to its rPUF oracle, the algorithm Bpred sets wi = H(s′||ci).
Subsequently, it queries its external PUF-oracle on wi, obtains qi, stores (ci, wi, qi) in L, and
forwards qi to the attacker AC . At some point AC stops outputting a challenge-response pair
(c∗, r∗).

Finally, the algorithm Bpred outputs some (w∗, r∗) with w∗ = H(s′||c∗).
Suppose that Apred is a type-2 attacker and succeeds with non-negligible probability. Ob-

serve that both algorithms are efficient and that Bpred performs a perfect simulation from
Apred’s point of view. Then there exists no index i such that w∗ = wi. But if no such index
exists, Bpred has never queried w∗ to its oracle and thus, w∗ is a prediction. However, this is
a contradiction to the unpredictability of PUFs and thus, such an attacker cannot exists.

11/33

3.3.2 Construction 2

In some application it could be possible that the PUF only possesses a small response space,
e.g., r ∈ {0, 1}. Consequently, we cannot apply our Construction 1 since it supports a large
space of both challenges and responses.

From there we propose a second construction which deals with a large challenge space and
a small response space. Intuitively, our second construction is similar to Construction 1 except
that we blow up the response length by repeating the PUF evaluation step many times. We
formalize the intuition in the following construction:

Construction 2 Let PUF = (Assemb,Eval) be a physically unclonable function with range
2|R|. We construct a reconfigurable physically unclonable function rPUF = (rAssemb, rEval,Reconfig)
with range 2|R|∗x as follows:

Assembling On input of the security parameter 1n the algorithm rAssemb runs the assem-
bling algorithm of the physically unclonable function to obtain a PUF, i.e., PUF ←
Assemb(1n). It chooses a value s ← {0, 1}n at random, an extension factor x ∈
{0, 1}n, and a hash function H ← hGen(1n). The algorithm rAssemb then returns
(rPUF,PUF, s, x,H).

Evaluation On input of the challenge c, the extension factor x, and the state s, the algorithm
rEval sets wj = H(c||s||j) and runs the PUF evaluation algorithm on wj, i.e., qj ←
Eval(wj) for j = 1, . . . , x. It then returns the x×m-bit response q = (q1, . . . , qx).

Reconfiguration On input rPUF the reconfiguration process Reconfig picks s′ ← {0, 1}n
uniformly at random and sets s← s′.

Theorem 3.2 If the physically unclonable function PUF is unpredictable and H is a collision-
resistant hash function, then Construction 2 is an unpredictable reconfigurable physically un-
clonable function.

Proof The main idea is as follows: Suppose to the contrary that Construction 2 is insecure.
We then construct an attacker B that (1) breaks the unpredictability of the underlying PUF
or that (2) finds collisions in the collision–resistant hash function H. But before describing
the algorithm B we distinguish between two types of attacker that A can emulate. Suppose
that A adaptively asks for challenges (c1, ..., cL, cL+1, ..., cC) and obtains the corresponding
response (q1, ..., qL, qL+1, ..., qC). Recall that qi = q1i , ..., q

x
i with qji ← rPUF(wji) where

wji :=

{
H(s||ci||j) for i = c1, ..., cL, j = 1, ..., x
H(s′||ci||j) for i = cL+1, ..., cC , j = 1, ..., x

.

Let (c∗, r∗) be the adversary’s prediction where r∗ = r1∗, ..., r
x
∗ and rj∗ ← rPUF(wj∗) with

wj∗ = H(s′||c∗||j). We say that

Type-1 attacker A is a type-1 attacker, denoted by Acol, if there exists indices i, j, k such
that wji = wk∗ with wj∗ = H(s′||c∗||j) and i ∈ {1, . . . , L, L+ 1, . . . , C}, j, k ∈ {1, ..., x}.

Type-2 attacker A is a type-2 attacker, denoted by Apred, if no such indices exist.

In the following we show for each type of attacker, Acol,Apred, how to construct a suitable
simulator Bcol,Bpred. At first, the algorithm B tosses a coin to guess if A is a type-1 or a
type-2 attacker. Subsequently, B proceeds as follows:

12/33

Type-1 attacker On input key k the algorithm Bcol firstly chooses a collision-resistant hash
function H, i.e., H ← hGen(1n). Then, it chooses a value s ← {0, 1}n and sets rPUF(·) :=
PUF(H(s|| · ||j)). Now, Bcol runs a black-box simulation of Acol.

If AL sends a challenge ci to its rPUF oracle, the algorithm Bcol computes the answer
as follows: It computes wji = H(s||ci||j) for j = 1, ..., x and queries its external PUF-oracle
on wji . It obtains qi = q1i , ..., q

x
i , and stores (ci, w

j
i , q

j
i) in some (initially empty) list L, and

forwards qi to the attacker AL. At some point AL stops outputting some state information
st.

After obtaining st, the algorithm Bcol changes the reconfiguration value s to a fresh ran-
domly chosen value s′ ← {0, 1}n in order to reconfigure the rPUF. It then executes AC as a
black-box on input st. According to our construction we denote by rPUF′ the reconfigured
PUF. It then runs a black-box simulation of AC on input st (with access to rPUF′).

If AC sends a challenge ci to its rPUF′ oracle, the algorithm Bcol computes the answer as
follows: It computes wji = H(s′||ci||j) for j = 1, ..., x and queries its external PUF-oracle on
wji , i.e., q

j
i ← rPUF(wji). It then obtains qi = q1i , ..., q

x
i , stores (ci, w

j
i , q

j
i) in some list L, and

forwards qi to the attacker AC . At some point AC stops outputting a challenge-response pair
(c∗, q∗).

The algorithm Bcol now parses ((w1
1, ..., w

x
1), ..., (w1

L, ..., w
x
L), (w1

L+1, .., w
x
L+1), ..., (w

1
C , ..., w

x
C))

and outputs the first element wji = wk∗ with wj∗ = H(s′||c∗||j) and i ∈ {1, . . . , L, L +
1, . . . , C}, j, k = 1, ..., x. If such an element does not exists, then Bcol aborts.

For the analysis assume that Acol is a type-1 attacker that succeeds with non-negligible
probability. Observe that both algorithms are efficient and that Bcol performs a perfect sim-
ulation from Acol’s point of view. Then there exists an index i such that wji = wk∗ . But if
wji = wk∗ , then Bcol has found a collision in the hash function H. However, this is a con-
tradiction to the collision-resistance of the hash function and thus, such an attacker cannot
exists.

Type-2 attacker On input the security parameter n the algorithm Bpred proceeds as follows:
Bpred chooses a reconfiguration value s← {0, 1}n and a collision-resistant hash function H. It
then runs a black-box simulation of A = (AL,AC).

Now, consider the first phase of the unpredictability game. If AL sends a challenge ci to
its rPUF oracle, the algorithm Bpred computes the answer as follows: It sets wji = H(s||ci||j)
for j = 1, ..., x and it sends these values to its external PUF oracle. It turn, Bpred obtains
qi = q1i , ..., q

x
i , stores (ci, w

j
i , q

j
i) in some (initially empty) list L, and forwards qi to the attacker

AL. At some point AL stops outputting some state information st.
After obtaining st, the algorithm Bpred updates the reconfiguration value s to fresh and

randomly chosen value s′ ← {0, 1}n in order to reconfigure the rPUF. According to our
construction we denote by rPUF′ the reconfigured PUF. It then runs a black-box simulation
of AC on input st (with access to rPUF′).

IfAC sends a challenge ci to its rPUF′ oracle, the algorithm Bpred proceeds as follows: It sets
wji = H(s′||ci||j), queries its external PUF-oracle on wji , and in turn it obtains qi = q1j , ..., q

x
j .

Finally, it stores (ci, w
j
i , q

j
i) in L, and forwards qi to the attacker AC . At some point AC stops

outputting a challenge-response pair (c∗, r∗).
Finally, the adversary Bpred computes wj∗ = H(s′||c∗||j). It then outputs the first element

wj∗ that is not ((w1
1, ..., w

x
1), ..., (w1

L, ..., w
x
L), (w1

L+1, .., w
x
L+1), ..., (w

1
C , ..., w

x
C)).

13/33

For the analysis assume that Apred is a type-2 attacker that succeeds with non-negligible
probability. Observe that both algorithms are efficient and that Bpred performs a perfect
simulation from Acol’s point of view. Then, the success probability (denoted by win) of the
algorithm Bpred can be calculated as follows:

Pr[B win] = Pr[A win] · Pr[B win|A win] + Pr[A ¬win] · Pr[B win|A ¬win]

=

(
1

|R| · x
+ ε(n)

)
· 1 +

(
1−

(
1

|R| · x
+ ε(n)

))
· 1

|R|

=
1

|R|
+
|R| − 1

|R|2 · x
+
ε(n) · (|R| − 1)

|R|

The algorithm Bpred predicts the PUF with probability 1
|R| + δ(n), where δ(n) = |R|−1

|R|2·x +
ε(n)·(|R|−1)

|R| is non-negligible and > 0. Since |R| >= 1 both terms |R|−1|R|2·x and ε(n)·(|R|−1)
|R| are

> 0.

14/33

4 Recyclable Tokens

Token-based access control systems are a pervasive technology that is used in many different
applications. An emerging trend in practice is to use wireless tokens based on radio frequency
identification (RFID) systems. These systems allow for the fully automatic identification and
authentication of objects and their users and are increasingly employed in security-critical
areas and in various applications where privacy-sensitive information is entrusted to tokens.

However, despite their benefits, RFID-enabled systems also pose challenging security and
privacy risks (see, e.g., [WSRE03, Jue06, ASVW10]). Indeed, RFID tokens typically are
computationally and memory constrained devices without protection against physical tam-
pering [Atm11, NXP11]. Hence, hardware attacks that reveal the secrets of tokens impede
the use of cryptographic authentication schemes and allow for cloning and forgery of tokens.
Moreover, existing privacy-protecting schemes cannot be applied directly to RFID-based to-
kens due to their high computational complexity. Hence, designing economically efficient
RFID-enabled access control systems that are resistant to hardware attacks and that preserve
the privacy of their users, is a challenging open problem.

One approach to solve this problem are physically unclonable functions (PUFs, see Sec-
tion 2.2). The security properties of PUFs can be used to prevent cloning and impersonation
of PUF-enabled tokens without adding expensive secure or trusted components to the token.
In literature, several approaches to PUF-based authentication and identification have been
proposed (see, e.g., [REC04, TB06, OHS08, SVW10]), while commercial PUF-enabled RFID
tokens are already on the market [Ver11].

In many applications of token-based access control systems (e.g. ski passes, gift certificates,
transportation tickets), the tokens are recycled. This means that, in case a user does not
need his token any longer, the token is returned to the operator of the access control system
where it is reissued and later given to a new user. This approach is economically efficient
since the operator does not need to buy new tokens. Moreover, this is environment-friendly
since integrated circuits are difficult to recycle. However, when recycling a token, it must
be ensured that the security objectives of the operator of the access control system and the
previous, current and future users of that token are not violated. For instance, the new user of
a reissued token should not be able to illegitimately obtain the access rights of a previous user
or gain any privacy-sensitive information about the previous or future users of that token.

Existing PUF-based authentication schemes either integrate the PUF in the authentication
protocol or use it to bind a cryptographic secret to the hardware of a specific token. Note that
existing PUFs are static components that typically cannot be updated without significantly
changing the security and functional properties of the PUF. However, reissuing a PUF-enabled
token in a secure way, i.e., such that the security and privacy properties of the corresponding
identification/authentication scheme are preserved for previous and future users of that token,
usually would require replacing or changing the PUF component on the token, which is not
feasible in practice. This can be realized by using reconfigurable PUFs, which have been
introduced in Section 3.

In this section, we describe a token-based access control system that supports recyclable
unclonable PUF-enabled tokens. Our approach extends existing PUF-based authentication
schemes by integrating logically reconfigurable PUFs (see Section 3). The integration of LR-
PUFs is not straightforward. In particular, the efficient verification of LR-PUF responses
is a challenging problem. Previous approaches using a database of PUF challenge-response
pairs (CRPs) cannot be applied directly to LR-PUFs since reconfiguring an LR-PUF changes

15/33

its challenge-response behavior and thus invalidates the CRP database, while having a CRP
database for each reconfiguration state is inefficient and impractical. However, the verifier
must be able to verify the outputs of the reconfigured LR-PUF while this must be infeasible
for the adversary.

4.1 Use Case Description

A token-based access control system consists of a system operator O, a set of tokens T , and
a set of verifiers V, as depicted in Figure 2. O is the entity that initializes and maintains

Token T Verifier V

Operator O

Database D

initializes initializes/maintains

authenticates reads/updates

Secure channel Untrusted channel

initializes

Figure 2: Token-based access control system

the token-based authentication system. Hence, each token and verifier is initialized by O
before they are deployed in the system. Tokens and verifiers are called legitimate if they
have been initialized by O. In many applications T is an embedded device with constrained
computing and memory capabilities that is either equipped with a wired or radio interface
(e.g., a smartcard or an RFID chip). Usually T is attached to some object or carried by a user
of the access control system. V is a stationary or mobile computing device that interacts with
T when it is inserted into some card reader or gets into the radio reading range of V. The
main purpose of this interaction usually is the authentication of T to V. Depending on the use
case, V may also authenticate to T and/or obtain additional information like the identity of
T . V can have a sporadic or permanent online connection to some backend system D, which
typically is a database maintaining detailed information on all tokens in the system. This
database is initialized and maintained by O and can be read and updated by V.

Trust and adversary model. The system operator O maintains the token-based access
control system, and thus is considered to behave correctly. Moreover, we assume that tokens T
and verifiers V are initialized in a secure environment that cannot be accessed by the adversary.
Likewise, T is reinitialized in the same secure environment before being reissued. However,
O may be curious and collect user information (see, e.g., [WSRE03, Jue06, ASVW10]). In
case T and V communicate over a radio link, every entity can eavesdrop and manipulate this
communication, even from outside the nominal reading range of V and T [KW06]. Thus, the
adversary can be every (potentially unknown) entity. Besides the communication between T
and V, the adversary can also obtain useful auxiliary information (e.g., by visual observation)
on whether V accepted T as a legitimate token [JW06, Vau07]. Moreover, each token is
assumed to be equipped with a LR-PUF as defined in Section 3.

Security objectives. The major security objectives are to prevent the creation of illegiti-
mate (forged) tokens that are accepted by honest verifiers, prevent impersonation and copying
(cloning) of legitimate tokens, and to make sure that it is impossible to permanently prevent

16/33

users from using legitimate tokens by exploiting deficiencies in the underlying protocols (denial-
of-service attack) [BvLdM06]. In case of reusable tokens, another major threat would be the
impersonation of previous or future users of a token. The most pressing privacy risk concerns
the tracking of users (and their identities), which allows the creation and misuse of detailed
user profiles. For instance, detailed movement profiles can leak sensitive information on the
personal habits and interests of the user of a token. This is of particular importance in access
control systems using wireless tokens [WSRE03, Jue06, ASVW10]. Thus, an RFID-enabled
token-based access control system should provide anonymity as well as untraceability of tokens
even if all the information stored on a token (e.g., its authentication secret) has been disclosed.
Anonymity means the confidentiality of the identity of a token whereas untraceability refers
to the unlinkability of the communication of a token.

The security requirements for a token-based access control system supporting recyclable
tokens can be summarized as follows:

• Unforgeability of tokens: Only tokens that have been initialized by the system operator
must be accepted by honest verifiers.

• Availability: Only the system operator can revoke and reinitialize tokens.

• Revocability: A revoked token must not be accepted by the verifiers.

• Impersonation resistance: The user of a reinitialized token must not be able to pretend
to be one of the previous users of that token. Moreover, the new user of a token should
not be able to make use of the access rights that have been granted to that token for
previous users. Further, an old user of a reinitialized token must not be able to pretend
to be the new user of that token.

• Confidentiality: The user of a reinitialized token must not be able to obtain any private
information (e.g., travel behavior) of previous and future users of that token.

• Anonimity: Only the system operator should be able to link the identity of the owner
to the corresponding token.

• Untraceability: Only the system operator should be able to link the transactions of a
token, even in case all information stored on the token has been disclosed.

4.2 Analysis of Existing Solutions

To prevent cloning of a token, it must be infeasible to determine its authentication secrets by
both attacking the corresponding authentication protocol as well as by physically attacking
the token. One solution to counter cloning attacks is to employ established physical protection
mechanisms that aggravate reading out the memory (e.g., the cryptographic authentication
keys) of a token [SA02, NPSQ03]. However, this would dramatically increase the price of
tokens and render them inappropriate for most commercial applications. A more economic
solution to prevent cloning can be realized by using physically unclonable functions (PUFs,
see Section 2.2). In general, there are three different approaches to PUF-based authentication
of hardware tokens, which will be discussed in the following.

17/33

Authentication Directly Based on PUF

PUFs can be used directly to identify and to authenticate hardware tokens as depicted in
Figure 3. Therefore, the token T must be equipped with a PUF but does not need to provide

Token T Verifier V

challenge c

PUF

Error
correction

CRP
database D

response r’
?
=

accept/reject

r

r

Figure 3: Authentication directly based on PUF

other security functionalities. The verifier V needs access to a database D that contains a
subset of challenge-response pairs (CRPs) of the PUF of each token. To identify/authenticate
T , V picks a random challenge c from D and sends it to T . On receipt of c, T replies with
the response r ← PUF(c) of its PUF. V accepts T only if there is a tuple (ID , c, r) ∈ D and
returns the identity ID of T . Otherwise, T is rejected.

Existing solutions. One of the first proposals following this concept has been introduced
by [REC04]. This approach has later been implemented on an RFID-enabled token and
its security and usability has been analyzed in [DSP+08]. A privacy-preserving variant of the
scheme in [REC04] offering untraceability of tokens has been proposed in [BR07]. The solutions
presented in [BR07, CGP+09] address the requirement of the verifier having permanent access
to the CRP database, which can be problematic in certain practical scenarios. To overcome the
requirement of an online database at the verifier side, [OHS08, HOS08] introduce the concept
of simulatable PUFs. A simulatable PUF is a PUF that can be described by a mathematical
model that allows for the algorithmic computation of the PUF response to any given PUF
challenge. According to [OHS08, HOS08], this mathematical model can only be derived from
special PUF measurements that can only be taken during the manufacturing process of the
PUF, which seems to be infeasible to achieve in practice. Moreover, simulatable PUFs seem to
contradict the unclonability property of PUFs. To set up the mathematical model of the PUF,
additional measurements must be taken during the PUF production, which requires some kind
of special interface to the PUF. This interface is very likely to be probe pads for the wafer
prober, which are not be bonded out to the package pins. It is assumed in [OHS08, HOS08]
that this interface is permanently disabled such that it cannot be accessed any more after PUF
deployment. However, in face of sophisticated reverse engineering techniques, this assumption
seems to be quite strong in practice. In fact, the reverse engineering effort required actually
seems to be relatively low, since it should be obvious which pads have not been bonded
out. Hence, the interface to the PUF could be reactivated after deployment and used by the
adversary to obtain the mathematical model and to simulate the PUF.

Discussion. Direct PUF-based identification/authentication is perfectly suited for applica-
tions that must use cost-efficient and hence typically resource-constrained tokens. However,
a drawback of the CRP database approach is that CRPs cannot be reused since this would

18/33

enable replay attacks and allow for the tracing of tokens. Hence, in this case, the number
of token authentications is limited by the number of challenge-response pairs in the verifier’s
database D.

Authentication Based on Cryptography and PUF-based Key Storage

PUFs can be used to securely store data, e.g., a cryptographic secret [vTO05, LLG+05]. Such a
PUF-based key storage can be combined with arbitrary standard cryptographic authentication
protocols, as shown in Figure 4. Before deployment, token T must be initialized in a secure

Token T Verifier V

response r′

Non-volatile
memory

secret K

accept/reject

PUF

Error
correction

Crypto
algorithm

query q

answer a

challenge c

Non-volatile
memory

Crypto
algorithm

secret K

Figure 4: Authentication based on cryptography and PUF-based key storage

environment. During the initialization process a secret key K is established between T and
the verifier V. However, instead of storing the authentication secret of a token T in tamper-
resistant memory, the PUF is used to reconstruct the secret whenever it is needed. Therefore,
T stores in its non-volatile memory the challenge c from which the authentication secret K of
T is derived. Whenever K must be used, T queries its PUF with c to obtain the corresponding
PUF response r′. Since r′ typically is slightly different on each read-out of the PUF and not
a uniformly distributed value, r′ cannot be used directly as a cryptographic secret. Thus,
error correction and privacy amplification must be applied to r′ to derive K (see Section 2.2).
In practice, this can be achieved by fuzzy extractors [DRS04]. Finally, K can be used in a
standard authentication protocol to authenticate T to the verifier V. Since K is inherently
hidden within the physical structure of the PUF of T , obtainingK by hardware-related attacks
is supposed to be intractable for real-world adversaries.

Existing solutions. The authors of [TB06] propose to use a PUF-based key storage to
protect the authentication secrets of RFID-enabled tokens. A privacy-preserving variant of
this approach has been presented in [SVW10].

Discussion. The advantage of this approach is that it can be used with any existing authen-
tication scheme and does not require any modifications to the hard- and software of existing
verifiers. According to [TB06], a PUF-based key storage can be implemented with less than
1000 gates, which is feasible with current RFID chips. However, besides the PUF and the

19/33

error correction scheme, the token must additionally contain the implementation of a crypto-
graphic authentication scheme. Although there are many optimized cryptographic algorithms
and implementations specifically designed for resource-constrained devices, the efficient inte-
gration of both a PUF-based key storage and a cryptographic scheme on an RFID chip is a
challenging task in practice. Moreover, since all the different components shown in Figure 4
are crucial for the security of the authentications scheme, these building blocks and the busses
connecting them must be implemented such that they are resistant to hardware attacks. In
practice, this assumption is difficult to achieve. Only recently, the authors of [KS10] have
shown the feasibility of side-channel attacks against error correction mechanisms as used in
PUF-based key storage.

Authentication Based on Hardware-entangled Cryptography

Another approach to PUF-based authentication is hardware-entangled cryptography. This
means that the PUF is used as an integral component of the cryptographic authentication
scheme (see Figure 5). More in detail, the token T implements a hardware-entangled crypto-

Token T Verifier V

query q

answer a

accept/reject

Hardware-
entangled
crypto-
graphic
scheme

Verification
procedure

PUF

cir′i

Figure 5: Authentication based on hardware-entangled cryptography

graphic scheme that is based on a PUF. To authenticate T , the verifier V sends a query q to
T , which then replies with an answer a that is computed using the hardware-entangled cryp-
tographic scheme on input q. During this computation, one or more challenges ci to the PUF
are generated and the corresponding responses r′i are included into the subsequent processing
steps that compute a. To verify a, V must be in possession of an appropriate verification
procedure. In case the answer a returned by T is valid, V accepts T . Otherwise T is rejected.

Existing solutions. Currently, the only known hardware-entangled cryptographic scheme is
a PUF-based block cipher that has been presented in [AMS+09]. However, since the encryption
and decryption can only be performed by the device containing the underlying PUF, this
scheme cannot be used as a basis of an hardware-entangled cryptographic authentication
scheme.

Discussion. The problem of hardware-entangled cryptography based on PUFs is that the
underlying computations can only be performed by the device containing the PUF. Hence,
it is difficult for the verifier to check whether the answer of the token has been computed
correctly. To build authentication schemes from PUF-based cryptographic primitives, some
kind of publicly verifiable PUF is needed. Such a verifiable PUF would allow for checking

20/33

whether a certain response to some challenge has actually been generated by a particular
PUF without having access to the PUF or the corresponding CRP database. However, the
design of such PUFs currently is an open research problem.

4.3 Security Architectures for Recyclable Tokens

In this section, we describe how to realize recyclable secure and privacy-preserving access
tokens. Our solution extends existing approaches to PUF-enabled token-based access control
systems by using logically reconfigurable PUFs (see Section 3). More precisely, we adapt
the direct PUF-based authentication and the PUF-based key storage approach to support
LR-PUFs. Hereby, it must be carefully considered that the integration of the LR-PUF does
not subvert the security and privacy features of existing approaches. Moreover, for practical
applicability it is crucial that the verification procedure of the verifier is still efficient.

Authentication Directly Based on PUF

We adapt the general concept of direct PUF-based authentication by replacing the PUF of
the token T by a LR-PUF. To revoke and reissue T , the LR-PUF of T is reconfigured,
which (ideally) corresponds to replacing the PUF of T with a different one. However, by
reconfiguring the LR-PUF of T , the CRP database D of the verifier V is invalidated. To
counter this problem, instead of having a database of CRPs of the LR-PUF, V is given access
to a database containing the CRPs for the real PUF underlying the LR-PUF construction and
the LR-PUF state of each token. Since the algorithms of the control unit (i.e., the input and
output transition functions and the state update procedure) are publicly known, V can use the
CRPs and state information of the database to recompute the LR-PUF response for a given
challenge and any state of T . However, this requires V and the LR-PUF to be synchronized
w.r.t. the LR-PUF state.

Note that this approach is very efficient to implement on the token side since, besides
the LR-PUF construction, no other components are required on the token. In scenarios,
where severely resource-contained tokens must be used, the optimized LR-PUF construction
presented in Section 3.3 is particularly suitable.

Authentication Based on Cryptography and PUF-based Key Storage

We adapt the approach that combines PUF-based key storage and cryptographic authenti-
cation techniques by replacing the PUF of the PUF-based key storage with a LR-PUF. To
revoke and reissue a token T , the LR-PUF of T is reconfigured, which (ideally) corresponds
to replacing the PUF of T with a different one. This invalidates the old authentication secret
K of T and creates a new authentication secret K ′ 6= K. More in detail, when T attempts to
reconstruct its authentication secret after reconfiguration, the LR-PUF will return a different
response r̃′ 6= r′. Hence, applying the error correction to r̃′ leads to a different authentication
secret K̃ 6= K. To verify T , the verifier V must know the new authentication secret K̃ ′ of
T . Therefore, the reinitialization procedure of T must include a key transport mechanism to
securely transfer K̃ ′ to V. This can be realized by a standard key transport protocol. Ideally,
this protocol is based on the cryptographic primitives of the cryptographic algorithm used for
the authentication of T to V and does not require additional components.

The advantage of this approach is that it does not require any modifications to the verifiers.
However, as discussed in Section 4.2, the implementation on the token side is rather complex

21/33

and the security of this approach is based on assumptions that are difficult to achieve in
practice.

22/33

5 HW/SW-Binding

In many of today’s electronic products, embedded software plays an important role. Crucial
functional parts of a device are implemented in hardware (i.e., in integrated circuits) but more
and more higher layers (e.g., drivers, control, user interface) are implemented in embedded
software or firmware that is running on an internal processor or micro-controller. This keeps
the design flexible. Changing the software is easier and less costly than making new hardware.
Furthermore it makes the design cycle shorter since bugs can easily be repaired in later software
upgrades.

An advantage of software flexibility is the possibility to use it for device differentiation.
The functionality of a device can be changed by updating the software image with a version
that enables more features. Depending on the type of device, such an update mechanism can
be implemented in the field. If for example the user pays an additional fee, he can download an
updated software version and activate new features on his device. The product differentiation
feature can however be abused by attackers. They will try to upgrade devices by simply
copying the software of one device to another device. This way the attacker can counterfeit
a more expensive product, without paying for it (counterfeiting scenario). In other cases
software needs to be upgraded in order to fix certain security holes in a system. Once such a
hole is discovered, the manufacturer wants to update the software of the devices in order to fix
the security problem. After the bug fix has been performed attackers might try to downgrade
the software to a previous version and exploit the security hole to their advantage (security
patch scenario).

5.1 Use Case Description

System model. The HW/SW-binding system from this use case consists of a system oper-
ator O, different versions of software S, and a set of devices D. O is the entity that initializes
and maintains the HW/SW-binding system. Each D that is supplied by O contains some le-
gitimate version of S. After supplying D it is possible for O to change (or update) the version
of S remotely in a secure and authenticated manner. This update can either be performed
on all supplied D or on a subset of D, which has been selected by O. Different versions of S
can either differentiate between the functionality that is allowed by O on D or new versions
of S can be released in order to patch (security) bugs in older versions of S. Finally, D is the
hardware that has been supplied by O, which can run the version of S that O allows for that
specific D.

Trust and adversary model. The system operator O maintains the system, and is thus
considered to behave correctly. Moreover, we assume that D and S are initialized in a secure
environment. However, the version of S on a legitimate D should be able to be changed
remotely by O in a secure way.

An adversary in this use case is anyone who attempts to run a version of S on hardware in
a manner that has not been authorized by O. It is unauthorized if an adversary attempts to
run any version of S on hardware that has not been approved by O. Another possible attack
is to run a different version of S on an authorized D than the version that has been allowed
by O. This can either be a version of S with more functionality or an older version of S with
known (security) bugs.

23/33

Security objectives. If S can be copied from one D to another, this could lead to a
serious loss in revenue for O. Consider the situation where O supplies smart-cards for pay-
TV applications. These cards (D) run a certain version of S, which allows the users of the
smart-card to watch a selected set of pay-TV channels. If it is possible to copy S from one
D to another, it will become possible to copy S from a card with the most complete pay-
TV package and copy this S to other D, which have not been authenticated to watch these
channels. This way attackers can watch all channels with any D, even if they do not pay for
this functionality. Therefore, O could sustain a big loss in revenue.

Furthermore, consider a security sensitive application that runs S on D. In case this
application becomes compromised due to a breach of the security of S, it should be possible
for O to patch S (remotely). After the security patch has been performed, it should be
impossible for an attacker to downgrade S to the previous bugged version. If an attacker
is able to downgrade S, this will cause a security risk that can lead to loss of revenue or
reputational damage for O. For certain applications it might even lead to reliability or safety
issues.

The security requirements for HW/SW-binding can be summarized as follows:

• Software authenticity: Prevent running software on unauthorized hardware, i.e., an ad-
versary should not be able to copy and use the software on another device.

• Downgrading resistance: Prevent downgrading of software, i.e. an adversary should
not be able to downgrade the software to a previous version, which may have known
(security) bugs.

5.2 Analysis of Existing Solutions

Existing anti-counterfeiting methods. Systems exist in which software is bound to spe-
cific hardware by encrypting parts of the software with a unique key or identifier that is
permanently stored in the device. Only the device that has the correct key is able to decrypt
the correct software. Copying the software to a second device will not work since the crypto-
graphic key is different on the second device. This could be used to prevent counterfeiting.

Problem of existing methods. There is however a problem with the existing method.
The system can be circumvented if the cryptographic key or identifier can be copied from
one system to another. Therefore the key must be stored in a relatively expensive secure
non-volatile memory.

5.3 Security Architectures for HW/SW-Binding

Solutions to the problems of existing methods. In order to solve the problem of secure
key storage, we propose to use a PUF. PUFs can be used to securely generate cryptographic
keys on a device and in a cost-effective way. PUF keys are derived “on the fly” based on
the intrinsic characteristics of the hardware and are never stored permanently in a device.
Since the PUF key is only available in the very limited amount of time when it is used in a
cryptographic computation, it is very difficult to copy such a key. Invasive attacks will not
leak information on the PUF key but instead will probably destroy the PUF rendering the
hardware useless and the software uncopyable. By encrypting parts of the software with the
cryptographic key derived from the PUF, the software can be securely bound to a specific

24/33

device. Since PUFs are unique and unclonable, the key that is derived from the PUFs will not
be reproducible on another device. Therefore, using a PUF to generate the key that encrypts
the software prevents counterfeiting by copying the software from one device to another.

Problem of security patches. Even if the key is securely generated by a PUF and can
therefore not be copied, this does not prevent an attacker from downgrading a system to a
previous software version. The reason is that the PUF, which has been used to derive the
key for the previous software version, produces the same response and therefore the same key
for the new version. Because the derived key has not changed an attacker might be able to
downgrade the software to its previous (bugged) version. In other words: like the new version,
the old version of the software can still be bound to the hardware.

Solution for security patches. In order to prevent the possibility of downgrading software
to a previous version, we propose to use a logically reconfigurable PUF as defined in Section 3.3.
When a new software version is distributed to the device, the PUF is reconfigured. After
reconfiguration, the PUF has a new and unpredictable challenge-response behavior. This
results in the fact that the cryptographic key that is derived from the PUF is also renewed.
If the previous software is now copied back to the device, it cannot be decrypted because the
PUF key has changed. Note that in this application it is important that the reconfiguration
cannot be undone. In other words, the reconfiguration must be one-way.

Definition of upgrade (and reconfigure) protocols. In order to support software down-
grading it is necessary that in each software-update step the PUF has to be reconfigured. The
update could be encoded by a key that is derived from the new PUF state. Thus, a reconfig-
uration before installing the update is enforced.

25/33

6 Evaluation Principles

Raising the assurance level of hardware security solutions is a core objective of the UNIQUE
project. One way to view assurance is as a metric that provides a confidence level that an im-
plemented solution will perform as intended, even in the presence of adversaries. Determining
the assurance level of a system is a challenging task. Security solutions are composed of many
individual protections, which are often interdependent and exist at differing abstraction lev-
els, spanning silicon, algorithms, protocols and systems as well as including non-technological
aspects such as operational policies and economics. Adversaries will try to attack the sys-
tem in ways that are typically different from those the designers had envisioned, for example
by attempting to manipulate the system environment into atypical states. These aspects
necessitate a holistic and multi-disciplinary approach to security engineering.

This section is motivated by the need to analyse the security requirements and assumptions
early on in the design process. More comprehensive evaluation and validation activities are
the focus of WP3. In WP3, a baseline security evaluation using a subset of the Common
Criteria V3.1 [Com11a] will assess whether the solutions within UNIQUE meet the prescribed
Common Criteria evaluation assurance level EAL5. This baseline will act at the foundation
for further WP3 work.

In this section we will outline a basic evaluation framework which can inform the WP3
activities, as well as providing input into WP2 which focuses on design and implementation.
We will then analyse the security architectures and protocols defined in previous sections, in
order to extract the security requirements both explicit and implicit. Any assumptions made
are investigated as these often inform the attack strategy of the adversary. Since a practical
realisation of the developed security solutions is the goal of UNIQUE, this must be done with
reference to implementation considerations.

6.1 Evaluation Framework

The difficulty of evaluating whether a system meets a prescribed assurance level is reflected
in the significant time and cost associated with a Common Criteria or FIPS140-2 [Fed] evalu-
ation. In the context of the Unique project a complete Common Criteria evaluation is neither
appropriate (since evaluations are intended to be applied to a commercial product), nor pos-
sible due to time and cost constraints. We outline here an evaluation framework which can
inform the evaluation and validation activities of WP3. The scope is restricted to the system
embedding the LR-PUF.

LR-PUF primitives The primitives used in the LR-PUF constructions of Section 3 must
be evaluated with a focus on practical realisations. Implicit security requirements and assump-
tions must be extracted and depending on the overall system threat model, the resistance to
invasive attacks and side-channel analysis may be evaluated. The security requirements and
assumptions of LR-PUFs are analysed in Section 6.2.

LR-PUF construction The algorithms and protocols defining the LR-PUF functionality
must evaluated. A formal methodology is appropriate here. Security proofs for the algorithms
which define the LR-PUF behaviour are presented in Section 3.2. Further work is required to
extended these to include the LR-PUF state transition behaviour. The security implications of
an attacker observing or modifying an internal communication pathway between the LR-PUF

26/33

primitives should be evaluated. Any decision to mitigate such an attack must be informed by
the system threat model.

Implementation Correctness Evaluating whether the implementation matches the spec-
ification is key to a achieving a meaningful assurance level. Although the Common Criteria
evaluates some aspects of the development process, such as configuration management, fun-
damentally it evaluates the specification, not the implementation. Noting that evaluating the
correctness of the implementation is important, the capability to move seamlessly from a for-
mal security algorithm or protocol specification to a hardware friendly design representation
does not exist today. The result is a verification and evaluation gap which unless closed in-
troduces the possibility of weakened security. Formal analysis tools are gaining momentum in
the IC design community, where tools employing formal methods [Syn] are employed to eval-
uate the equivalence of hardware representations at differing levels of abstraction. Such an
approach has potential in closing the evaluation gap, particularly in the control unit primitive
of the LR-PUF.

6.2 Analysis of Security Requirements

The high level security requirements of a token-based access control system supporting re-
cyclable tokens are made explicit in Section 4.1. These requirements will be the foundation
of any security evaluation, and in some cases map directly onto standard Common Criteria
security functional requirements (SFR), one example being the FMT_REV: Revocation SFR
[Com11b]. With the exception of Unforgeability and Impersonation Resistance, these require-
ments will not be analysed further since they have implications which span many aspects of
the overall system which are outside of the scope of this deliverable.

Instead we will focus on the LR-PUF constructions introduced in Section 3 which is build
on a number of lower level primitives. We will review these primitives to extract the implicit
security requirements and assumptions. Any evaluation framework must validate these in
addition to the explicit security requirements of Section 4.1 as a necessary first step.

Physically Unclonable Functions In Section 2.2 a formal definition of a physically
unclonable function is given. Definition 1 is sufficiently broad to include all known PUF
architectures including those with small challenge-response spaces. However, the LR-PUF
constructions of Section 3 and the security architectures for recyclable tokens of Section 4.3,
strongly point towards a large challenge-response space PUF implementation for both LR-
PUF instantiations of Section 3.3. In practice this means an arbiter PUF [GCvDD02b]. The
two remaining PUF definitions must be examined in this context.

Definitions 2, 3 and the high level requirement Unforgeability are closely related. If it is
possible to predict the response to a given challenge without evaluating the PUF then it is
possible to clone the PUF, by emulating it with a software model for example. Model building
attacks on the arbiter PUF were introduced in [GLC+04]. Here an attacker collects a subset of
PUF CRPs and attempts to derive a numerical model from this data, allowing the prediction
of responses to arbitrary challenges with reasonable probability. Variants of the arbiter PUF
have been proposed to increase the resistance to modelling attacks, such as the the controlled
PUF [GCvDD02a], the feed forward arbiter PUF [GLC+04] and the XOR arbiter PUF [SD07].
In [RSS+10] a variety of machine learning techniques are applied to the arbiter PUF and its
variants.

27/33

With the above in mind it seems prudent that any arbiter PUF based design considers
model building attacks for inclusion in the threat model and evaluation framework. The LR-
PUF constructions prevent a chosen challenge attack1 on the underlying PUF, while allowing
the raw PUF responses to be read. However, since the hash primitive, LR-PUF state and
challenge/state concatenation details are publicly known, the attacker will have knowledge of
which challenge was applied thus increasing the feasibility of a modelling attack. Note that
the formal security model in Section 3.2 acknowledges the existence of algorithms that can
predict the response to a chosen LR-PUF (not PUF) challenge before the LR-PUF has been
reconfigured. Mitigations can include appropriate selection of the PUF security parameter
1n from Definition 1 in order to increase the computational complexity of a modelling attack
and sizing parameter qL of Definition 7 such that the number of CRPs required for a model
building attack is prohibitive. Using more resilient arbiter PUF variants such as the XOR
arbiter PUF and implementing a hardware delay to limit the number of LR-PUF evaluations
that can be made per unit time are other options.

LR-PUF State Memory The LR-PUF construction requires non-volatile memory (NVM)
in order to store the state. The state storage requirements are low, presumably 128 bits,
while the memory must be multiple-time programmable (MTP) to support reconfiguration.
Typical embedded flash or EEPROM capacities are a minimum of 4 Kb [TSM11], ruling
these out (unless the excess capacity can be otherwise utilised). These technologies also have
the disadvantage of requiring additional wafer processing steps which has cost implications.
They also tend to lag the leading edge technology nodes by a number of generations. NVM
technologies which can be implemented in standard CMOS have been proposed since at least
the early ’90s [OAT94], although it is only relatively recently that they have become widely
available. These technologies are collectively known as logic NVM in the industry. An MTP
variant of this technology is available [Syn11] at densities from 128 bits upwards making it a
good fit for the LR-PUF application.

As discussed in Section 3.1, the security requirements of the NVM are simplified in that
the security of the LR-PUF is not dependent on keeping the LR-PUF state secret. It should be
noted that this is dependent on the underlying PUF being in practice unclonable. Assuming
that this is the case, an attacker may want to change the LR-PUF state back to an old
configuration. If successful, the high level Impersonation Resistance requirement would not
be met. The details of how state is updated is not considered in this deliverable, however
mitigations against this attack can range from state consistency checks at the verifier V to
hardware level protection mechanisms implemented at the token T to prevent NVM updates
to arbitrary states. A TPM-like ’extend’ mechanism may be appropriate here [Tru03], where
the TPM platform configuration registers are updated with the SHA-1 hash of the previous
register data concatenated with the new data.

An attacker may attempt to bypass all higher level protection mechanisms by mounting
an invasive attack on the NVM itself, in an attempt to change the contents to an arbitrary
state. The storage mechanism used in the NVM under consideration relies on storing charge
on a floating gate, a technique also common to EEPROM and flash technologies. Although
known attacks on NVM focus on extracting memory content rather than changing memory
content, successful modification of EEPROM bits using optical techniques is demonstrated in
[Sko05b]. However, such techniques are more suited to single or localised bit fault injection

1A chosen challenge attack is one where the attacker is free to apply an arbitrary PUF challenge.

28/33

rather than the modification of a complete memory and probably not feasible for modern
CMOS technology nodes due to sub-optical wavelength feature sizes. For the well funded
and motivated attacker, the use of a focussed ion beam (FIB) allows charge to be deposited
or removed from individual bit locations. Increasing the number of bit locations that an
invasive attacker must modify is one simple way to increase the effort level and probability of
error. Other mitigations include ensuring that the NVM floating gates are buried under metal
routing or shielding, although attacks from the silicon backside can bypass these protections.

Memory remanence in NVM technologies should be considered. Data recovery in a limited
number of flash devices is reported in [Sko05a]. The techniques developed are not general
and therefore may not be applicable to the NVM technologies considered above, however the
possibility of data remanence should be considered particularly in the recyclable access token
use case.

LR-PUF Control Logic The generic LR-PUF shown in Figure 1 combines a control logic
unit with the PUF and NVM primitives. The function of this unit is to implement the algo-
rithms specified in the LR-PUF constructions of Section 3.3. The main security requirement
here is for a collision resistant hash function as specified in Section 2.3. In practice, se-
lecting the hash function will involve analysing existing hardware implementations in terms
of silicon area and performance, a task which has been addressed in UNIQUE Deliverable
D2.1 [UNI10b]. The selection must also be informed by up-to-date findings from the security
research community.

The control unit is also responsible for LR-PUF state management, resulting in some
implicit security requirements. The first of these is that the state is read-only at the LR-
PUF interface. This can be enforced at the hardware level, for example by ensuring that
there is no physical write path to the state storage. A sophisticated invasive attacker may be
able to bypass such a protection, for example by performing silicon FIB edits. Any decision to
include invasive attacks in the threat model must be informed by the properties of the complete
system, including non-technological aspects such as the value of the assets being protected and
operational policies. Mitigations against invasive attacks are reviewed in UNIQUE Deliverable
D1.1 [UNI10a]. In the context of a cost sensitive application such as a recyclable access token,
mitigations at the silicon level would likely be restricted to protective coatings, passivation
layers and passive shields implemented in top level metal. Note that a design decision as
fundamental as choosing a parallel data path over a serial one can raise the effort level for the
invasive attacker.

The second implicit security requirement relates to the LR-PUF state transition function.
In order to prevent an attacker from predicting future LR-PUF states, the transition function
should be unpredictable which results in a random number generator (RNG) requirement.
An attacker may be able to bias the RNG by environmental, means such raising the die
temperature outside of normal limits. Mitigating against this type of attack in a cost con-
strained application is challenging, in the recyclable access token it could be mitigated at the
operational level since token are reconfigured in a trusted environment.

29/33

References

[ABKR08] Mikhail J. Atallah, Eric D. Bryant, John T. Korb, and John R. Rice. Binding
software to specific native hardware in a vm environment: the puf challenge and
opportunity. In VMSec ’08: Proceedings of the 1st ACM workshop on Virtual
machine security, pages 45–48, New York, NY, USA, 2008. ACM.

[AMS+09] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, B. Sunar, and Pim
Tuyls. Memory leakage-resilient encryption based on physically unclonable func-
tions. In Advances in Cryptology - ASIACRYPT, volume 5912 of LNCS, pages
685–702, 2009.

[ASVW10] Frederik Armknecht, Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachs-
mann. On rfid privacy with mutual authentication and tag corruption. In
Jianying Zhou and Moti Yung, editors, Proceedings of the 8th International
Conference on Applied Cryptography and Network Security (ACNS’10), volume
6123 of LNCS, pages 493–510. Springer, June 22–25 2010.

[Atm11] Atmel Corporation. RFID and smart identification solutions for dozens of mar-
kets. http://www.atmel.com/products/overview_wireless.asp, 2011.

[BR07] Leonid Bolotnyy and Gabriel Robins. Physically unclonable function-based se-
curity and privacy in RFID systems. In Proceedings of PERCOM, pages 211–220.
IEEE Computer Society, 2007.

[BvLdM06] Mike Burmester, Tri van Le, and Breno de Medeiros. Provably secure ubiquitous
systems: Universally composable RFID authentication protocols. In Proc. of
SecureComm, pages 1–9. IEEE Computer Society, 2006.

[CGP+09] Pier Francesco Cortese, Francesco Gemmiti, Bernardo Palazzi, Maurizio Pizzo-
nia, and Massimo Rimondini. Efficient and Practical Authentication of PUF-
based RFID Tags. Technical Report RT-DIA-150-2009, Università degli studi
Roma Tre, Dipartimento di Informatica e Automazione, June 2009.

[Com11a] Common Criteria Portal. http://www.commoncriteriaportal.org/, 2011.

[Com11b] Common Criteria v3.1 Part 2: Security Functional Requirements. http://www.
commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3.pdf, 2011.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. In Advances in
Cryptology - EUROCRYPT, volume 3027 of LNCS, pages 523–540, 2004.

[DSP+08] Srinivas Devadas, Edward Suh, Sid Paral, Richard Sowell, Tom Ziola, and Vivek
Khandelwal. Design and implementation of PUF-based unclonable RFID ICs for
anti-counterfeiting and security applications. In IEEE International Conference
on RFID 2008, Las Vegas, NV, USA, 16–17 April, 2008, pages 58–64. IEEE
Computer Society, 2008.

[Fed] Federal Information Processing Standard 140-2 - Security Requirements
for Cryptographic Modules. http://csrc.nist.gov/groups/STM/cmvp/
standards.html#02.

30/33

http://www.atmel.com/products/overview_wireless.asp
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3.pdf
http://csrc.nist.gov/groups/STM/cmvp/standards.html#02
http://csrc.nist.gov/groups/STM/cmvp/standards.html#02

[GCvDD02a] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. Con-
trolled physical random functions. In ACSAC ’02: Proceedings of the 18th An-
nual Computer Security Applications Conference, page 149, Washington, DC,
USA, 2002. IEEE Computer Society.

[GCvDD02b] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. Silicon
physical random functions. In ACM Conference on Computer and Communi-
cations Security, pages 148–160, New York, NY, USA, 2002. ACM Press.

[GLC+04] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten van Dijk, and Srinivas
Devadas. Identification and authentication of integrated circuits: Research ar-
ticles. Concurr. Comput. : Pract. Exper., 16(11):1077–1098, 2004.

[GMS09] M. Gora, A. Maiti, and P. Schaumont. A flexible design flow for software ip
binding in commodity fpga. In IEEE Fourth International Symposium on Indus-
trial Embedded Systems - SIES 2009, Ecole Polytechnique Federale de Lausanne,
Switzerland, July 8 - 10, 2009, pages 211–218. IEEE, July 2009.

[HOS08] Ghaith Hammouri, Erdinç Öztürk, and Berk Sunar. A tamper-proof and
lightweight authentication scheme. Pervasive and Mobile Computing, 4(6), De-
cember 2008.

[Jue06] Ari Juels. RFID security and privacy: A research survey. Journal of Selected
Areas in Communication, 24(2):381–395, February 2006.

[JW06] Ari Juels and Stephen A. Weis. Defining strong privacy for RFID. ePrint,
Report 2006/137, 2006.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman
& Hall/CRC, 2007.

[KS10] Deniz Karakoyunlu and Berk Sunar. Differences template attacks on PUF en-
abled cryptographic device. Presented at the IEEE Workshop on Information
Forensics and Security (WIFS’10), December 2010.

[KSS+09] Klaus Kursawe, Ahmad-Reza Sadeghi, Dries Schellekens, Pim Tuyls, and Boris
Scoric. Reconfigurable physical unclonable functions – enabling technology for
tamper-resistant storage. In 2nd IEEE International Workshop on Hardware-
Oriented Security and Trust - HOST 2009, pages 22–29, San Francisco, CA,
USA, 2009. IEEE.

[KW06] Ilan Kirschenbaum and Avishai Wool. How to build a low-cost, extended-range
RFID skimmer. ePrint, Report 2006/054, 2006.

[LLG+05] Daihyun Lim, Jae W. Lee, Blaise Gassend, G. Edward Suh, Marten van Dijk,
and Srini Devadas. Extracting secret keys from integrated circuits. IEEE Trans-
actions on VLSI Systems, 13(10):1200–1205, 2005.

[NPSQ03] Michael Neve, Eric Peeters, David Samyde, and Jean-Jacques Quisquater. Mem-
ories: A survey of their secure uses in smart cards. In Proceedings of the Second

31/33

IEEE International Security in Storage Workshop, October 31, 2003, pages 62–
72. IEEE Computer Society, 2003.

[NXP11] NXP Semiconductors. MIFARE smartcard ICs. http://www.mifare.net/
products/smartcardics/, February 2011.

[OAT94] K. Ohsaki, N. Asamoto, and S. Takagaki. A single poly eeprom cell structure for
use in standard cmos processes. Solid-State Circuits, IEEE Journal of, 29(3):311
–316, March 1994.

[OHS08] Erdinç Öztürk, Ghaith Hammouri, and Berk Sunar. Towards Robust Low Cost
Authentication for Pervasive Devices. In Proceedings of the 2008 Sixth Annual
IEEE International Conference on Pervasive Computing and Communications
(PERCOM’08). IEEE Computer Society, March 2008.

[REC04] Damith C. Ranasinghe, Daniel W. Engels, and Peter H. Cole. Security and
privacy: Modest proposals for low-cost rfid systems. Auto-ID Labs Research
Workshop, September 2004.

[RSS+10] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas, and
J "urgen Schmidhuber. Modeling attacks on physical unclonable functions. In
CCS 2010: Proceedings of the 17th ACM conference on Computer and commu-
nications security, pages 237–249, New York, NY, USA, 2010. ACM.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks. In
4th International Workshop on Cryptographic Hardware and Embedded Systems
(CHES 2002), Redwood Shores, CA, USA, August 13–15, 2002, Revised Papers,
volume 2523 of LNCS, pages 31–48. Springer Verlag, 2002.

[SD07] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device
authentication and secret key generation. In Design Automation Conference,
pages 9–14, New York, NY, USA, 2007. ACM Press.

[Sko05a] Sergei Skorobogatov. Data remanence in flash memory devices. In Josyula R.
Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded Systems -
CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages 339–353.
Springer Berlin / Heidelberg, 2005.

[Sko05b] Sergei P. Skorobogatov. Semi-invasive attacks – A new approach to hardware se-
curity analysis. Technical Report UCAM-CL-TR-630, University of Cambridge,
Computer Laboratory, April 2005.

[SVW10] Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachsmann. Puf-enhanced
rfid security and privacy. 2nd Workshop on Secure Component and System
Identification (SECSI’10), April 26–27 2010.

[Syn] Synopsys formal equivalence checker. http://www.synopsys.com/Tools/
Verification/FormalEquivalence/Pages/default.aspx.

[Syn11] Synopsys NVM Products. http://www.synopsys.com/IP/EmbeddedMemories/
Pages/AeonNoveaNvm.aspx, 2011.

32/33

http://www.mifare.net/products/smartcardics/
http://www.mifare.net/products/smartcardics/
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/default.aspx
http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/default.aspx
http://www.synopsys.com/IP/EmbeddedMemories/Pages/AeonNoveaNvm.aspx
http://www.synopsys.com/IP/EmbeddedMemories/Pages/AeonNoveaNvm.aspx

[TB06] Pim Tuyls and Lejla Batina. RFID-tags for anti-counterfeiting. In The Cryp-
tographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February
13–17, 2005, Proceedings, volume 3860 of Lecture Notes on Computer Science
(LNCS), pages 115–131. Springer Verlag, 2006.

[Tru03] Trusted Computing Group. TCG TPM specification 1.2, 2003. http://www.
trustedcomputinggroup.org.

[TSM11] TSMC Embedded Memory. http://www.tsmc.com/download/brochures/
2010_Embedded_Memory.pdf, 2011.

[UNI10a] UNIQUE project. Deliverable D1.1: Requirements, Threat Models and Report
on Building Blocks for Hardware Security, 2010.

[UNI10b] UNIQUE project. Deliverable D2.1: Description and design of intrinsic hard-
ware security, crypto and hardware entangled crypto components, 2010.

[Vau07] Serge Vaudenay. On privacy models for RFID. In Proc. of ASIACRYPT, volume
4833 of LNCS, pages 68–87. Springer, 2007.

[Ver11] Verayo, Inc. Verayo website — product page. http://www.verayo.com/
product/products.html, February 2011.

[vTO05] Boris Škorić, Pim Tuyls, and Wil Ophey. Robust key extraction from physical
uncloneable functions. In Applied Cryptography and Network Security (ACNS),
volume 3531 of LNCS, pages 407–422, 2005.

[WSRE03] Stephen A. Weis, Sanjay E. Sarma, Ronald L. Rivest, and Daniel W. Engels.
Security and privacy aspects of low-cost radio frequency identification systems.
In Proc. of PerCom, volume 2802 of LNCS, pages 50–59. Springer, 2003.

33/33

http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.tsmc.com/download/brochures/2010_Embedded_Memory.pdf
http://www.tsmc.com/download/brochures/2010_Embedded_Memory.pdf
http://www.verayo.com/product/products.html
http://www.verayo.com/product/products.html

	Introduction
	Preliminaries and Notation
	Notation
	Physically Unclonable Functions (PUFs)
	Collision-resistant Hash-Functions

	Logically Reconfigurable PUFs
	Overview
	Formal Security Model
	Unpredictable LR-PUFs

	Instantiations
	Construction 1
	Construction 2

	Recyclable Tokens
	Use Case Description
	Analysis of Existing Solutions
	Security Architectures for Recyclable Tokens

	HW/SW-Binding
	Use Case Description
	Analysis of Existing Solutions
	Security Architectures for HW/SW-Binding

	Evaluation Principles
	Evaluation Framework
	Analysis of Security Requirements

